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Multimode Network Description of a Planar
Periodic Metal-Strip Grating at a Dielectric

Interface—Part II: Small-Aperture
and Small-Obstacle Solutions

MARCO GUGLIELMI AND ARTHUR A. OLINER, LIFE FELLOW, IEEE

,4b.vtract — In Part I of this pair of papers, we developed new multimode

equivalent network representations for the scattering of a plane wave

incident on a metal-strip grating at an air-dielectric interface. The analyti-

cal phrasing led to two Fredholm integral equations of the first kind with

singular kernels. In thk paper (Part II) we present two analytical small-

argument solution procedures for those integral equations, and we derive

expIicit expressions for the elements of the coupling matices in the

small-apertrsre and small-obstacle ranges for both ‘IX and TM polariza-

tions. Simple and useful equivalent network descriptions are derived in

which all of the network elements are in very simple analytical form. When

the discontinuity is “electrically small,” the resulting network becomes

dramatically simple. The various networks are discussed together with

estimates for their ranges of applicability. Finally, numerical comparisons

are presented with an independent numerical reference solution, showing

that the new simple networks are indeed very accurate within their ranges

of applicability.

I. INTRODUCTION

I NPART I of this set of two papers, we presented two

general formal integral-equation solutions to the prob-

lem of a plane wave incident at an angle under multimode

conditions on a metal-strip grating located at an air–

dielectric interface, as shown in Fig. 1. The solutions were

developed in terms of equivalent networks with a shunt

matrix coupling the various modes (spectral orders) excited

by the grating. For each solution, the generic coupling

matrix element Am,. (defined in (3) below) was given in

terms of the integral of an unknown function specified by

a partial integral equation. It was also shown that although

we actually formulated the problem for both TE and TM

polarizations from two different viewpoints, namely, aper-

ture and obstacle formulations, we need to solve only two

types of integral equation, corresponding respectively to
the “electrically small” and “electrically large” discontinu-

ities, to have the solutions for all four cases.
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Fig. 1. Plane wave incident at an arbitrary angle on a metal-strip

grating at a plane air-dielectric interface, where the grating period

permits propagating higher spectral orders. Both TE and TM polariza-
tions are considered.

In this paper, we present two analytical methods for

solving those integral equations in the small-argument

range; for both the electrically small and the electrically

large cases, simple and accurate equivalent network de-

scriptions are derived in which all of the network elements

are in very simple analytical form. For the electrically

small case, the resulting network turns out to be dramati-

cally simple for both TE and TM excitations. The interest-

ing properties of these networks are discussed, and it is

shown how their ranges of validity can be assessed for each

case. Finally, several numerical computations are pre-

sented that show, via comparisons with values obtained

from an accurate independent reference solution, how these

new network descriptions are indeed useful and accurate

over a reasonably wide range of parameter values.

Before proceeding with the exposition of the solution

procedures, it is convenient to recall the two equations in

question, which are both Fredholm integral equations of

the first kind with singular kernels. The first type of

integral equation, hereafter referred to as Fl, is
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and it applies to the aperture formulation with TM excita-

tion or the obstacle formulation with TE excitation, corre-

sponding to the “electrically large” case. The second type,

hereafter referred to as F2, is

,-J~z=J’/’#)B)B ~ ,m,e-Jy(.-z)& (2)
– b/2 Pn#o

which is valid for the obstacle formulation with TM excita-

tion or the aperture formulation with TE excitation, corre-
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spending to the “electrically small” case. Finally, the inte- Fig. 2. The original coordinate system fc,r both the “electrically large”

gral relation between the generic matrix element A~. and
and the “electrically small” phrasings of the scattering problem.

the unknown function ~H(z) is
z

Am,n=Jb/2fn(z’)eJy’’dz’. (3)
– b/2

,++

—— ———

Expressions (1) and (2) correspond to (48) and (49) of Part

g.

/-

1, respectively, whereas (3) corresponds to either (15) or Pd–
(35) of Part I, depending on whether Am, ~ refers to Z~, ~

x

or Y~ ~. Note that, to simplify notation, we have dropped (1) – ~(2)/

the superscripts on B and ~H(z’) in (1) and (2).
‘r //.—— ——— __/LL

11. SMALL-ARGUMENT ANALYTICAL SOLUTION OF F1:

THE FIRST INTEGRAL EQUATION

In this section, we outline a solution procedure for the

F1 integral equation derived in Part I that yields a very

simple and accurate “small-argument” approximate result.

This solution procedure has already been used by Palocz

and Oliner [1], in a form that is basically an extension to a

multimode situation of the discussion presented in the

Waueguide Handbook [2] for a single propagating mode.

This procedure is briefly outlined here for the sake of

clarity. To illustrate the above-mentioned procedure, let us

examine the relevant integral equation (1) and note that its

kernel can be summed in closed form according to [3],

obtaining

2m77
K(Z)=2 ~ ~cos —

‘n
z= —21n 2sin —z . (4)

~=lm P P

I
Fig. 3. The new coordinate system introduced in connection with (6)

and (7) for the small-argument solution of the integraf equation rele-
vant to the “electrically large” case.

introduction of a change of variables due to Schwinger [4]:

77
Cos —z = (xCoso (6)

P

Using the coordinate system shown in Fig. 3 and the

proposed change of variables, we have

–b
z=— -+z=dl-+fl=O

2
(8)

b
z=;+z=dz+o=~. (9)

Therefore, substituting (4) into (1) and expanding the sine
L

function, we obtain
In (5), however, we also have sine terms, which can be

easily rewritten in terms of cosines, The kernel can then be

e-’%z=j~~.(z’)

expanded in terms of a, following the treatment in [1];

when we retain terms only up 10 the second order, it

becomes

.(-2B)ln 2sin ~zcos ~z’-2cos ~zsin ~z’ dz’. (5) ~K((j,8’) =lna-2 ~ titsln me’
~=1 m

The main difficulty in solving (5) is due to the fact that

the Period D of the kernel is different from the interval b
–;cosecos6’’+o (a4). (lo)

.
of integration, These lengths p and b are defined in the Now that we ha~e expressed the kernel in a more conve-
coordinate system shown in Fig. 2, where the interval

– b/2 to b/2 represents the aperture width a in Fig. 1 if
nient form, we expand the left-band side of (5) in terms of

the formulation of the problem is made in aperture terms,
a, obtaining

or the width of the obs~acle ( p – a in Fig. 1) if an obstacle
2n%?

formulation is used. This difficulty can be overcome with a
e–j~z +(-l) n{l+2njacose --2 A’cos’6+o(a3)}

shift of the origin to that shown in Fig. 3 and then by the
(11)
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where we have introduced the change of variables shown

in (6) and (7).

The next step is the expansion of the unknown function

~~(z’) in (5), together with the necessary mapping deriva-

tive, in a similar power series:

[1 dz’
fn(z’)m = M:’o(d’)+ jww;yo’)+ CTlyy(e’)

(12)

where M~R and M; are the real and imaginary parts of

~n(z’) dz’/dO’. Finally, employing (10), (11), and (12) in (5)

and comparing like coefficients, we obtain the results

The above integrals can now be used to evaluate the

generic matrix element Am, ~ given by

Am,.=/b’2fn(z)e’%dz
– b/2

which then becomes

(17)

(-1)
m+n+l

A=m,n 2Blna
[1- a2(m2+ n2)-2a2mnlna],

?n, n=o, *l, +2,... (18)

.~b

a=sln T;
(19)

where, to carry out the evaluation of the integral, we have

used the same change of variable and expansions intro-

duced earlier. Equations (18) and (19) constitute the

“small-argument” solution of (l). To recover the solution

for a specific scattering problem, we need only to use the

appropriate expressions for the constants b and B defined

in Section V of Part I.

III. SMALL-ARGUMENT ANALYTICAL SOLUTION OF F2:

THE SECOND lNTEGRAL EWJATION

In this section we present a novel analytical approximate

solution of the F2 integral equation derived in Part I. The

basic idea behind this procedure is the reduction of the

relevant integral equation to the canonical form of the

Cauchy integral equation that has a known solution.

The first step is to rewrite the kernel of (2) in the form

‘m.

K(z – z’) = lim ~ lmle-al~le-J~fz-”j (20)
8+0

m+O

to aid in summing the kernel in closed form. This phrasing

is in principle equivalent to formulating the integral equa-

tion a small distance 8 away from the grating in the x

direction and then taking the limit for 8 + O. Next, we

substitute (20) into (2) and, integrating by parts, obtain

.-J%--= J“/;(z&-
—;_

‘P

. lim ~ ‘e’81~le-J~tZ-z’) dz’ (21)
8+0 Hl#o m

together with the condition

L(z’)L’=+b/2=o (22)

which is consistent with the boundary conditions for both

TE and TM excitations. The kernel of (21) can now be

summed in closed form by recalling that [3]

‘f ~-8msinm~ = !. sin x

2 cosh8–cosx “
(23)

~=1

Taking the limit for 8 ~ O we can finally express (21) in

the more convenient form

27r

2nf?
e–j~~ =

The next

variables

sin~(z– z’)

~’lz ~;(z)g dz’. (24)
– b/2

l–COS; (Z– Z’)

step is the introduction of the change of

f.

so that, expanding both the kernel and the known function

in (24) in a power series in b/p and retaining terms only

up to the second order, we can write

(26)

where

(28)

We now recognize that we have successfully reduced the

original integral equation (2) to the canonical form of the

Cauchy integral equation. The solution of (26) can now be

written at once [5] in the form

where the star on the integral sign means that we take its

principal value. Equation (29) is the small-argument solu-

tion of the original integral equation. The only thing that is
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left is the evaluation of constant C; in order to do so, let

us recall condition (22) imposed on ~.(z), which is equiva-

545

we finally obtain

lent to
A=m,n

1
jf( )‘ :$ :d<=O.

–1 n

(28), (29), and (30) to

c=–;
o

(30)

obtain, in a few

(31)

(32)

(33)

All of

explicit

pendix;

the integrations required in (42) to obtain the

expression for A~,. are carried out in the Ap-

(42) then reduces to the ve~ simple result
We can now use

simple steps,

()lbr2
A —— for all m,n.

““=i p2
(43)

where IV. SUMMARY AND DISC LJSSIONOF THE

I@SULTS OBTAINED

At this stage we summarize the results obtained so far in

the context of the rigorous equivalent network representa-

tions presented in Figs. 5 and 6 of Part I. The general

network form to be used depends on whether we are

describing an aperture or an obsl,acle; then, the general

network form will reduce in different ways depending on

whether the discontinuity is “electrically large” (Fl solu-

tion) or “electrically small” (F2 solution). In addition, the

dynamic and static characteristic impedances to be used in

the particular network correspond 1,0 the TE or TM nature

of the excitation.

For the small-aperture gratings we employ the general

network form shown in Fig. 5 of Part I, where the specific

expressions for the network elements follow from the

small-argument solutions presented above. For the small-

aperture case with TM excitation, we have (FI solution)

‘O=G%’‘
I Gn(r$)

‘n=j-lmdt

Having formally evaluated C, we can rewrite the expres-

()sion for f; ~,$ in the form

()To recover the function f, :.$ we can now integrate (35),

yielding
(-1)

m+n+l

z=m,n
2Blna

[1- a2(m2+ n2)-2a2nznlna],

n’l, xl=o*l, +2,... (44)

7ra

a=s1n5j
(45)

(36)

Equation (36) is, therefore, the approximate analytical

solution we are seeking. To obtain the generic impedance

element A ~,. we need to perform one more integration,

namely,

(46)

(47)

-4nn=/b/2fn(z)eJ~2’tfzf–b/2

(37)
For the small-aperture case with TE excitation, we havz (F2

solution)
Using the notation introduced earlier, together with the

following definitions: la7i2

()z––– for all m, n
“’>n=B p2

(48)

(38)

()2’n 1 1
B=— jupop ~:)—+~ (49)

(39)
(50)

For small-obstacle gratings we u~je the general network

form given in Fig. 6 of Part I. The series element shown

there as – G./(Cjl) + Cj2)) can be renamed – ~. for
convenience. With this notational modification, we have,

(41)
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&

Fig. 4. Because the matrix elements Z~,,, in the small-aperture case
with TE mode excitation (“electrically smalf” case) are independent of
m or n, the general network description in Fig, 5 of Part I reduces to
the very simple one shown here.

for the small-obstacle case with TM excitation (F2 solution),

()Idrz
Y =– –– for all m, n

‘n’” Bp2
(51)

(52)

(53)

For the small-obstacle case with TE excitation, we have (Fl

solution)

(-1) m+n+l

Y=m,n 2Blna
[1- a’(m’+ n2)-2a2mnlna]

fornz, n=O, *l, *2,... (54)

nd

a=sln T;
(55)

(56)

jupop 1
Gn=— (57)

2mlnl(l 1)”

It is important to note that the expressions for Z~, ~ and

Y in (48) and (51), respectively, actually do not depend

o;’$ or n. As a ‘result of this independence, we can readily

show that the relevant networks reduce to the very simple

forms shown here in Figs. 4 ~nd 5. We first recall, from the

definition of the current I. in (8) of Part I, that this

current is the actual current in the modal line n when it

connects with the box in Fig. 5 of Part I that contains the

impedance matrix elements Zm ~. The voltage V~ across

the modal line m when it connects with that box is then

related to all the j. values and the Z~ ~ terms by relation

(9) in Part I, which we repeat here for ‘convenience:

(58)

Fig. 5. Because the matrix elements Ym,. in the small-obstacle case with
TM mode excitation (“electrically small” case) are independent of m
or n, the generaf network description in Fig. 6 of Part I reduces to the

very simple one shown here.

Now, since Z~, ~ in (48) is independent of m or n, it may

be called Zoo and taken out of the sum in (58). The

currents then all add together, and ZOO is evidently in

parallel across all the modal lines, as we see in Fig. 4.

Similar considerations involving (28) and (29) of Part I

show that Y~ ~ of Fig. 6 of Part I may be written as Yoo,

which is then ‘in series with all the modal lines, as we find

in Fig. 5.

Besides their inherent simplicity, one more feature com-

mon to all of the network descriptions developed here

deserves further comment, namely, that the networks are

rapidly convergent with respect to the addition of trans-

mission lines corresponding to further modes. Taking as an

example the network shown in Fig. 4, we notice that the

two shunt admittances – Y!], ~ and – Y~),, are in parallel

with each other and with the transmission lines corre-

sponding to the n = – 1 modes, and that this combination

is in parallel with the coupling element ZOO. When In I

becomes large, and when the mode in question is below

cutoff, the transmission lines are terminated by their reac-

tive dynamic characteristic admittances Y~l) and Y~2),

which in turn are almost equal to the static characteristic

admittances Y~~j and YJzj, since, for TE modes,

and

2m-pl/
y(m) = _ j

n..? pwpop$’@ “

The four admittances Y~l), YJ2), – Y~~~, and – ~~~j thus

sum to almost zero, so that their shunt effect on Zoo is

essentially negligible. The contributions from the higher

modes thus become vanishingly small as In I becomes large,

permitting us to employ an equivalent network of finite

size to represent the discontinuity with sufficient accuracy.
One more issue still needs to be addressed, namely, the

range of applicability of the results obtained. In order to

obtain an estimate of the range of applicability of the new

networks, let us recall that there is a key step common to

the approximate solutions of both the F1 and the F2
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integral equations, as well as to the derivation of the

closed-form analytical expressions for the matrix elements

A ~, ~. This key step is the series expansion of the exponen-

tial function exp[ + j(2nnz )/p] on the left-hand side of (1)

and (2) and on the right-hand side of (3).

With respect to the solution of the integral equation F2,

let us recall the expression for g.(f) in (27) but add one

more term in the expansion; we then obtain

(59)

In order to neglect all of the terms above the second order,

we must satisfy the following condition:

b 13
—<<——.
P n77

(60)

This condition imposes a restriction on the relative geo-

metrical size of the discontinuity in relation to the maxi-

mum order of the mode that can be explicitly considered.

In fact, (60) shows that if we need to include explicitly a

mode of larger order, the admissible relative obstacle or

aperture size decreases linearly with increasing order. A

similar constraint can be derived from the solution proce-

dure of the F1 integral equation, namely

wb 6n
sin——<<—

2p 4nZ–1” (61)

V. ACCURACY OF THE NEW SIMPLE NETWORKS

In the previous sections we derived two different analyt-

ical solutions, which in turn led to new simple equivalent

networks, for the scattering problem under investigation.

What we need now is a reference solution of proven

validity to verify the accuracy of the numerical results

obtainable from the simple new networks. Such a reference

solution can be obtained by recasting the original bound-

ary-value problem into a Riernann-Hilbert form of known

solution [6], which will be referred to from now on as the

RH solution. This sophisticated theoretical approach to

obtaining accurate numerical solutions to the scattering

problem investigated here has already been proposed by

other authors (for instance, [7] and [8]), and the accuracy

of the numerical results has already been demonstrated.

Using the RH solution given in [7] and the networks

developed here, we have performed calculations for several

cases and have compared the results obtained. The struc-

ture chosen to effect the comparisons is the one shown in

Fig. 1, where the angle of incidence 19is 15° and the ratio

a/p is varied in the range of small apertures (a << p) and

large apertures, or small obstacles (a= p). The quantity

compared is the relative transmitted power in the lowest

mode (n = O spectral order) versus the relative period

p/AO. For most of the computations p/AO = 1.70 is the

upper limit of the range evaluated since that range corre-

sponds to the region of interest for the grating application

that we originally had in mind (see Fig. 2 of Part I).
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0.0 0,5 1.0 1.5

RELfi TIVE PERI13D lPE131F3D/WRVE LENGTHl

(c)

Fig. 6. Comparisons between our F1 solution and the reference (RH)

solution for the large-aperture (small-obstacle) range with TE mode
incidence (“electrically large” case), for the relative transmitted power
in the lowest mode ( n = O spectraf order) as a function of the relative

period p/~o. The angle of incidence (19 in Fig. 1) is 15° and arr is
present on both sides of the grating, The relative aperture size (a/p in
Fig. 1) is equal to 0.9, 0.8, or 0.75 in (a), (b), or (c), respectively, Very

good agreement is observed over the range of interest except for case
(c), which is at the end of the large-aperture range.

Comparisons are presented below for the case in which

there is a dielectric medium (c\zl ❑ = 2.0) on one side of the

grating and air on the other side, :aswell as for the special

case where air is present on both sides.

For the numerical comparisons, we have arbitrarily se-

lected TE excitation; for this excitation, the grating discon-

tinuity will be “electrically small” for small apertures and

“electrically large” for small obstacles (or large apertures).

For TM excitation, the cases would be reversed but noth-

ing essentially different would arise. Hence the compar-

isons presented here cover both types of solution and are

effectively complete.

Before presenting the numerical results, we should dis-

cuss the number of modes that (can be included in any

specific network representation. We recall first of di that

the maximum order n of the modes that can be included is
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Fig. 7. Comparisons between our F2 solution, employing the simple
network in Fig. 4, and the reference (RH) solution for the small-aper-
ture range with TE mode incidence (“electricallys mall” case), for the
relative transmitted power in the lowest mode (FZ=O spectral order) as

a function of the relative period p/Ao. All of the structural parameters

are the same as those in Fig. 6, except for the relative aperture size

a/p,whkhis equal to O.1,0.2, or O.25 forthe cases in(a),(b), or(c),
respectively. Very good agreement is observed over the range of interest

except for case (c), where we are at the limit of the small-aperture
range.

related to the geometry of thegrating by condition (60) for

electrically small gratings or condition (61) for electrically

large ones. ForTE excitation and gratings forwhicha/p

is small, condition (60) yields n <<9.5, 4.8, or 3.8 when

a/p= O.1, 0.2, or 0.25, respectively. To loosely satisfy

condition (60), the largest value of n that we could select

in these three cases would be n= +4, *2, or ~2. For the

range of large apertures, condition (61) is not asdirect, but

similar considerations would permit us to choose n up to

t4, t2, or +-2 for a/p= O.9, 0.8, or 0.75, respectively.

These are the values we have chosen for our numerical

comparisons.

Alimitation in the mode number n also limits the range

ofp/AOover which the network representation isvalid. As

p/AO is increased, a larger number of modes go above

cutoff, and they must reincluded explicitly in the network

1.0
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Fig. 8. Same asm Fig. 6butwith adifferent dielectric medium (c~j=
2.0) on one side of the grating, and air on the other side.

representation. When this requirement conflicts with con-

ditions (60) or (61), we have reached the limit in the range

of p/AO for which the network representation can yield

accurate numerical results. Since n can be chosen up to

+4 fora/p= 0.9as compared with +2 fora/p=0.8, for

example, we should expect that the results for a/p=O.9

would be accurate over a much larger range of p/Ao.

Furthermore, since higher modes begin to radiate at lower

frequencies in a dielectric medium than in air, if adielec-

tric medium is present on one side of the grating the same

maximum mode order would result in a somewhat smaller

range of p/A ~. We shall see below that such behavior is

borne out by our numerical results.

With this introduction we are now ready to present the

numerical comparisons. Fig. 6 shows the results obtained

for a symmetric case (cjlj = t~2) = 1.0) in the large relative

aperture (or small-obstacle) range, namely a/p = 0.9, 0.8,

and 0.75 for the cases in (a), (b), and (c), respectively. In

accordance with condition (61), the numbers of modes we

have included in the networks are n = +4, +2, and +2,

respectively. As we can see, the agreement with the RH

solution is excellent over the range of interest except for
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Fig. 9. Same as in Fig. 7 but with a different dielectric medium (cY) =

2.0) on one side of the grating, and air on the other side.

the case in (c), where we are at the limit of validity for the

large-aperture condition. (The curves are direct computer

plots, and in Fig. 6(a) the two different solutions are

coincident.) Fig. 7 presents the comparisons obtained for

the same parameters as for Fig. 6, but in the small-aper-

ture range, namely a/p = 0.1, 0.2, and 0.25 for the cases in

(a), (b), and (c), respectively. (Note that the ordinate scales

are different for cases (a), (b), and (c) in Fig. 7.) As

mentioned above, the numbers of modes included,in the

networks for these computations are n = +4, +2, and &2,

in accordance with (60). Again, we observe very good

agreement over most of the range of interest, but the

results obtained from the network for case (c) are seen to

deteriorate since we are at the end of the small-aperture

range.

In both sets of figures we observe the presence of sharp

peaks at specific valuesofp/Ao .Thesepiaks occur when

a higher mode just reaches cutoff in the x direction,

corresponding to a diffracted beam which is just at the

grazing angle in the z direction. The peaks are also the

same as the pure Rayleigh form of Wood’s anomalies.

Going in the direction of increasing p/XO values in Fig.

alp = 0.90
n = (), *1,..., -t5

‘0.0 ~~
0.0 1.0 2.0 3,0 Y.o

RELRTIVE PERIOD (PERIOD/WAVELENGTH)
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Fig. 10. For this set of comparisons wehaveexplicitly includedin the

networks bigherorder modesup to n=::5, and we have extended the

relative period range up top/XO =4.0. The case in(a) corresponds to

a/P =0.9 with air on both sides of the grating, while case (b) corre-
sponds to a/p=O.l with C\l) =1.0 and c~) =2,0. When these new

networks are used well within their respective ranges of validity, they

are very accurate and, at the same time, can accommodate a substantial
number of propagating higher modes (or spectral orders).

6(a), the first, second, and third peaks occur when the

n=–1, +1, and –2 modes, respectively, are exactly at

cutoff. The peaks in Fig. 6 are much more pronounced

than those in Fig. 7 because the griiting for the calculations

in Fig. 6 represents m,electrically large discontinuity.

Figs. 8 and 9 exhibit the results found forthe same set

of parameters asthose used for Figs. 6 and7, respectively,

but with a different dielectric medium (with C~2J=2) on

one side of the grating. As we can see, the same general

pattern of agreement with the RH solution is obtained. We

also recognize that the presence of ’the dielectric medium

reduces the range of p/XO over which good agreement is

expected, in accordance with the discussion above. Note

again the presence of peaks in both Figs. 8 and 9, corre-

sponding to values of p/XO at which progressively higher

order modes are at cutoff in the air or in the dielectric

region.

Finally, in accordance with the discussion above, we

demonstrate in Fig. 10(a) and (b) that when a higher

number of modes can be included in the appropriate

network, according to conditiom (60) or (61), accurate

results can be expected over a larger range of p\Ao. We

included modes up to +5 in the networks corresponding

to a/p=O.l and 0.9. We observe from Fig. 10(a), for

a/p= O.9, that the agreement with the RH solution is

excellent up to p/ AO= 4.0. At the top of the figure we

indicate the correlation betweerl the cusp peak and the

order n of the higher mode that just begins to propagate,
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and we note that the n = – 5 mode begins to propagate at

p/A ~ almost equal to 4.0. Since the n = – 6 mode is not

included in the network, we would not expect the excellent
agreement to continue much above p/A ~ = 4.0. For Fig.

10(b), which corresponds to a/p = 0.1 and different di-

electrics on each side of the grating, the discrepancy be-

tween the two curves occurs earlier, i.e., for lower values of

p/AO, mainly because the higher modes begin to propa-

gate on the dielectric side at lower values of p\Ao. Al-

though the RH reference solution is accurate over a larger

range of p/A ~ values than is our network solution, we

should add that the computation time required for the RH

solution is far greater, particularly as more modes are

added, since a matrix inversion is required. A prime virtue

of our small-argument solutions is their relative simplicity.

VI. CONCLUSIONS

Many valuable papers have been published that are

concerned with the scattering of a plane wave by a peri-

odic metal-strip grating. Some papers provide accurate

numerical results even in the general case of arbitrary

angle of incidence, TE or TM field polarization, arbitrary

strip-to-period ratios, and, more important, a different

medium on each side of the grating and period-to-wave-

length ratios that permit diffracted higher order beams to

be present (multimode situation). Although procedures

that provide purely numerical results are available, compa-

rable useful equivalent network representations do not

exist.

In Part I of this pair of papers we present two new

rigorous multimode equivalent network representations

that are valid for the general situation indicated above.

These two new network representations, based on aperture

and obstacle formulations, respectively, follow from a

rephrasing of the relevant integral equations in which

“static” kernels are employed. The resulting integral equa-

tions remain rigorous, and so do the new network repre-

sentations that follow from them, despite the simplified

nature of the kernels, which in fact make it easier for us to

derive analytical solutions. Application to either TE or TM

excitation follows directly upon the insertion of the appro-

priate expressions for the modal characteristic impedance.

It is then shown that of the four cases (aperture or obstacle

formulation with TE or TM excitation), only two basically

different types of integral equation result; they are both

Fredholm integral equations of the first kind with singular

“static” kernels, but the kernels in each are different. The

two different integral equations are then identified as

corresponding to “electrically large” (Fl) and “electrically

small” (F2) formulations of the grating discontinuity.
In Part II, these two integral equations are solved in the

small-argument limit, yielding very simple analytical ex-

pressions for the elements of the equivalent networks,

which are then valid for the small-aperture and the small-

obstacle dimensional ranges. The equivalent networks

themselves simplify greatly, and those for the “electrically

small” case become strikingly simple.

For the wonderful advantage of having such very simple

network forms with analytically very simple expressions

for the network elements, we pay a price. The price is that

only a limited number of modes can be included in the

networks, in accordance with conditions (60) or (61). If

that limit is exceeded, the networks become less valid (in

addition to becoming slightly more complicated). In prac-

tice, this means that the range of aperture-to-period (a/p)

is limited to values below 0.25 or above 0.75, and that the

p\Ao values are also correspondingly limited (depending

on the number of modes permitted in the networks).

Within this limited, but not so small, range of grating strip

dimensions and wavelengths, we now have available an

ultrasimple group of equivalent networks which provide

very good accuracy. Five sets of curves are presented

which illustrate the accuracy obtained.

The importance of these equivalent networks resides in

their inherent simplicity and flexibility, which makes them

powerful tools for the analysis of more complex structures

containing these gratings as constituents.

APPENDIX

EVALUATION OF INTEGRALS OCCURRING IN THE

SINGULAR INTEGRAL EQUATION SOLUTION

Before describing the analytical evaluation of the inte-

grals in question, it is appropriate to introduce some

results that will be useful later, namely,

Equation (Al) can be simply derived from the partial

power series of (&/(), and the derivation of (A2) can be

found in [5]. We can now proceed with the evaluation of

the integrals, starting with G.($), which we will rewrite

explicitly, using (34) and (27):

The first integral in (A3) is the same as (A2); using (Al),

the second and third integrals can be reduced to a combi-

nation of integrals similar to the one in (A2) and other

known integrals. We finally obtain

(A4)
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The evaluation of DH($) is now straightforward, yielding

1

()
b, 2(1-.$’).+ ~n2772 —
P

Note also that from (A5) we have

(A5)

Dn(l)=Dn=o (A6)

and, therefore, to evaluate Am ~ we only need ~~ ~. To

evaluate this quantity we now n’eed to integrate the follow-

ing expression:

(A7)

which, after a few simple steps, becomes

(AS)
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