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Multimode Network Description of a Planar
Periodic Metal-Strip Grating at a Dielectric
Interface—Part II: Small-Aperture
and Small-Obstacle Solutions

MARCO GUGLIELMI axp ARTHUR A. OLINER, LIFE FELLOW, IEEE

Abstract —In Part I of this pair of papers, we developed new multimode
equivalent network representations for the scattering of a plane wave
incident on a metal-strip grating at an air-dielectric interface. The analyti-
cal phrasing led to two Fredholm integral equations of the first kind with
singular kernels. In this paper (Part II) we present two analytical small-
argument solution procedures for those integral equations, and we derive
explicit expressions for the elements of the coupling matrices in the
small-aperture and small-obstacle ranges for both TE and TM polariza-
tions. Simple and useful equivalent network descriptions are derived in
which all of the network elements are in very simple analytical form. When
the discontinuity is “electrically small,” the resulting network becomes
dramatically simple. The various networks are discussed together with
estimates for their ranges of applicability. Finally, numerical comparisons
are presented with an independent numerical reference solution, showing
that the new simple networks are indeed very accurate within their ranges
of applicability.

1. INTRODUCTION

N PART I of this set of two papers, we presented two

general formal integral-equation solutions to the prob-
lem of a plane wave incident at an angle under multimode
conditions on a metal-strip grating located at an air—
dielectric interface, as shown in Fig. 1. The solutions were
developed in terms of equivalent networks with a shunt
matrix coupling the various modes (spectral orders) excited
by the grating. For each solution, the generic coupling
matrix element 4, , (defined in (3) below) was given in
terms of the integral of an unknown function specified by
a partial integral equation. It was also shown that although
we actually formulated the problem for both TE and TM
polarizations from two different viewpoints, namely, aper-
ture and obstacle formulations, we need to solve only two
types of integral equation, corresponding respectively to
the “electrically small” and “electrically large” discontinu-
ities, to have the solutions for all four cases.
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Fig. 1. Plane wave incident at an arbitrary angle on a metal-strip
grating at a plane air—dielectric interface, where the grating period
permits propagating higher spectral orders. Both TE and TM polariza-
tions are considered.

In this paper, we present two analytical methods for
solving those integral equations in the small-argument
range; for both the electrically small and the electrically
large cases, simple and accurate equivalent network de-
scriptions are derived in which all of the network elements
are in very simple analytical form. For the electrically
small case, the resulting network turns out to be dramati-
cally simple for both TE and TM excitations. The interest-
ing properties of these networks are discussed, and it is
shown how their ranges of validity can be assessed for each
case. Finally, several numerical computations are pre-
sented that show, via comparisons with values obtained
from an accurate independent reference solution, how these
new network descriptions are indeed useful and accurate
over a reasonably wide range of parameter values.

Before proceeding with the exposition of the solution
procedures, it is convenient to recall the two equations in
question, which are both Fredholm integral equations of
the first kind with singular kernels. The first type of
integral equation, hereafter referred to as FI, is
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and it applies to the aperture formulation with TM excita-
tion or the obstacle formulation with TE excitation, corre-
sponding to the “electrically large” case. The second type,
hereafter referred to as F2, is

_Znﬂrz b/2 ,
e =["" 1(z)B
—b/2

2mm
Y mle™ 7" dr (2)

m#*0

which is valid for the obstacle formulation with TM excita-
tion or the aperture formulation with TE excitation, corre-
sponding to the “electrically small” case. Finally, the inte-
gral relation between the generic matrix element 4,, , and
the unknown function f,(z) is
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Expressions (1) and (2) correspond to (48) and (49) of Part
I, respectively, whereas (3) corresponds to either (15) or
(35) of Part I, depending on whether 4,, , refers to Z,, ,
or Y, .. Note that, to simplify notation, we have dropped
the superscripts on B and f,(z") in (1) and (2).

JI. SMALL-ARGUMENT ANALYTICAL SOLUTION OF F1:
THE FIRST INTEGRAL EQUATION

In this section, we outline a solution procedure for the
F1 integral equation derived in Part I that yields a very
simple and accurate “small-argument” approximate result.
This solution procedure has already been used by Palocz
and Oliner [1], in a form that is basically an extension to a
multimoded situation of the discussion presented in the
Waveguide Handbook [2] for a single propagating mode.
This procedure is briefly outlined here for the sake of
clarity. To illustrate the above-mentioned procedure, let us
examine the relevant integral equation (1) and note that its
kernel can be summed in closed form according to [3],
obtaining
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Therefore, substituting (4) into (1) and expanding the sine
function, we obtain
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The main difficulty in solving (5) is due to the fact that

the period p of the kernel is different from the interval b.

of integration. These lengths p and b are defined in the
coordinate system shown in Fig. 2, where the interval
—b/2 to b/2 represents the aperture width ¢ in Fig. 1 if
the formulation of the problem is made in aperture terms,
or the width of the obstacle ( p — a in Fig. 1) if an obstacle
formulation is used. This difficulty can be overcome with a
shift of the origin to that shown in Fig. 3 and then by the
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Fig. 2. The original coordinate system fcr both the “clectrically large”
and the “electrically small” phrasings of the scattering problem.
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Fig. 3. The new coordinate system introduced in connection with (6)
and (7) for the small-argument solution of the integral equation rele-
vant to the “electrically large” case.

introduction of a change of variables due to Schwinger [4]:

i
cos —z = acos (6)
P
. mbh .
a—51n2p. (7)

Using the coordinate system shown in Fig. 3 and the
proposed change of variables, we have

z=——>z=d,—>0=0

2

(8)

z=-2——>z=d2—>0=77. (9)

In (5), however, we also have sine terms, which can be

easily rewritten in terms of cosines, The kernel can then be

expanded in terms of a, following the treatment in [1];

when we retain terms only up to the second order, it
becomes

-1 ©  sin mé sin mb’
—Z—K(H,B’)=lna—2 3 —
m=1

2

a
Y cosfcosf’ + O(a*). (10)
Now that we have expressed the kernel in a more conve-
nient form, we expand the left-hand side of (5) in terms of
a, obtaining
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where we have introduced the change of variables shown
in (6) and (7).

The next step is the expansion of the unknown function
f.(z") in (5), together with the necessary mapping deriva-
tive, in a similar power series:

)

dz’
dﬂ’] ~ MRO(0')+ jaM1(6') + a*MR2(6)

(12)

where MX and M! are the real and imaginary parts of
f.(2") dz' /d8’'. Finally, employing (10), (11), and (12) in (5)
and comparing like coefficients, we obtain the results
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The above integrals can now be used to evaluate the
generic matrix element 4, , given by

2ma
A= [ (e (a7
—b/2

which then becomes
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(18)
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where, to carry out the evaluation of the integral, we have
used the same change of variable and expansions intro-
duced earlier. Equations (18) and (19) constitute the
“small-argument” solution of (1). To recover the solution
for a specific scattering problem, we need only to use the
appropriate expressions for the constants b and B defined
in Section V of Part L.

m,n=0,+£1,+£2,---
7 b

III. SMALL-ARGUMENT ANALYTICAL SOLUTION OF F2;:

THE SECOND INTEGRAL EQUATION

In this section we present a novel analytical approximate
solution of the F2 integral equation derived in Part I. The
basic idea behind this procedure is the reduction of the
relevant integral equation to the canonical form of the
Cauchy integral equation that has a known solution.

The first step is to rewrite the kernel of (2) in the form

2m

5 (20)

K(z—2z)=1lim ) |m|e %"l
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to aid in summing the kernel in closed form. This phrasing
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18 in principle equivalent to formulating the integral equa-
tion a small distance 8 away from the grating in the x
direction and then taking the limit for § — 0. Next, we
substitute (20) into (2) and, integrating by parts, obtain

2 (82 B
e’ p _f—b/an(Z) ‘277-
-
p

|m| 2mm ,
- lim —e gy = gz (21)
=0 40 M

together with the condition

fn(Z,)lz’=ib/2=O (22)
which is consistent with the boundary conditions for both
TE and TM excitations. The kernel of (21) can now be
summed in closed form by recalling that [3]
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Taking the limit for § — 0 we can finally express (21) in
the more convenient form
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The next step is the introduction of the change of
variables
b
z= 55 (25)
so that, expanding both the kernel and the known function

in (24) in a power series in b/p and retaining terms only
up to the second order, we can write

1 d§’
where
b 1 [ b\
gn(€)=1—jw;n€—5n'(w;) £ (27)
b \ Bp?
E,(%) =fn’(5$)%- (29)

We now recognize that we have successfully reduced the
original integral equation (2) to the canonical form of the
Cauchy integral equation. The solution of (26) can now be

written at once [5] in the form
y1-¢2

1 1 .
s C+;*_1§—_§‘8n(§)d§ (29)

where the star on the integral sign means that we take its
principal value. Equation (29) is the small-argument solu-
tion of the original integral equation. The only thing that is

Fn(g) =
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left is the evaluation of constant C; in order to do so, let
us recall condition (22) imposed on f,(z), which is equiva-

lent to
' / —b —b dé=0 30

We can now use (28), (29), and (30) to obtain, in a few
simple steps,

C= b-" (31)
where
DO=/j1\/1_‘% (32)
_/ 1% (33)
1 y1-8g,
G,(§) = ;f_lsf_—ggm . (34)

Having formally evaluated C, we can rewrite the expres-

b
sion for fn'( 55) in the form

,(§£)~3w__ D, +Gn(£)} (35)
1\ 3 T B\ pyi-g2 1-g )

b
To recover the function fn( 55) we can now integrate (35),

yielding
b ad D, ¢ d¢ £ G&(f)
- ap | mlne L "f}-

(36)

Equation (36) is, therefore, the approximate analytical
solution we are seeking. To obtain the generic impedance
element 4, , we need to perform one more integration,
namely,

2mm
= [ (2)er 7l (37)
~b/2

Using the notation introduced earlier, together with the
following definitions:

Dy(£) =fi\/%
(§)

(38)

(39)

A

b,=[ 11Do(s)g,:<s>ds

(40)

A

Bya= [ Du(#)g5(8) dt (41)
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we finally obtain

b 2
=[5
’ p

All of the integrations required in (42) to obtain the
explicit expression for 4, , are carried out in the Ap-
pendix; (42) then reduces to the very simple result

1/ba\?
=—|—= for all m, n.
Bip2

r1[, D,D,
s [Dm " . (42)

2 B D,

(43)

m,n

IV. SuUMMARY AND DISCUSSION OF THE
RESULTS OBTAINED

At this stage we summarize the results obtained so far in
the context of the rigorous equivalent network representa-
tions presented in Figs. 5 and 6 of Part I. The general
network form to be used depends on whether we are
describing an aperture or an obstacle; then, the general
network form will reduce in different ways depending on
whether the discontinuity is “electrically large” (F1 solu-
tion) or “eleetrically small” (F2 solution). In addition, the
dynamic and static characteristic impedances to be used in
the particular network correspond 1o the TE or TM nature
of the excitation.

For the small-aperture gratings we employ the general
network form shown in Fig. 5 of Part I, where the specific
expressions for the network elements follow from the
small-argument solutions presented above. For the small-
aperture case with TM excitation, we have (F1 solution)

(_1)m+n+1
Zm,,,:m—[l—az(m2+n2)~2a2mnlna],
a
m,n=0+1,+2,--- (44)
T a
a=sinE; (45)
we
= ) w
weee™p
Yy = e n+0. (47)

For the small-aperture case with TE excitation, we have (F2
solution)

1/am\?
Zmn=5(—5) for all m, n (48)
. P ,
27 1 1
B=—— (49)
Jjepop ( PO )
yom— 2l (50)
n,s (m)
Jwhou,™p

For small-obstacle gratings we use the general network
form given in Fig. 6 of Part I. The series element shown
there as —G,/(C® +C®) can be renamed —G, for
convenience. With this notational modification, we have,
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Fig. 4. Because the matrix elements Z_ , in the small-aperture case
with TE mode excitation (“electrically small” case) are independent of
m or n, the general network description in Fig. § of Part I reduces to
the very simple one shown here.
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for the small-obstacle case with TM excitation (F2 solution),

1/da\?
-_|ZZ for all m, n (51)

m,n

p2

27 1
B= Jjwegp e + @ (52)

27|n| 1
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For the small-obstacle case with TE excitation, we have (F1
solution)

(_1)m+n+1
mn= 3pTna 1~ @20 +n)=2a’mnina]
, ne
form,n=0,£1,£2,--- (54)
7 d
a=sin—2——— (55)
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P

It is important to note that the expressions for Z,, , and
Y,, . in (48) and (51), respectively, actually do not depend
on m or n. As a result of this independence, we can readily
show that the relevant networks reduce to the very simple
Jorms shown here in Figs. 4 and 5. We first recall, from the
definition of the current I, in (8) of Part I, that this
current is the actual current in the modal line » when it
connects with the box in Fig. 5 of Part I that contains the
impedance matrix elements Z,, ,. The voltage V,, across
the modal line m when it connects with that box is then
related to all the 7, values and the Z,, , terms by relation
(9) in Part I, which we repeat here for convenience:

0
Vm= Z Ian,n' (58)

n ool
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Fig. 5. Because the matrix elements ¥, ,, in the small-obstacle case with
TM mode excitation (“electrically smiall” case) are independent of m
or n, the general network description in Fig. 6 of Part I reduces to the
very simple one shown here.

Now, since Z,, , in (48) is independent of m or n, it may
be called Z,, and taken out of the sum in (58). The
currents then all add together, and Z, is evidently in
parallel across all the modal lines, as we see in Fig. 4.
Similar considerations involving (28) and (29) of Part I
show that Y, , of Fig. 6 of Part I may be written as ¥,
which is then in series with all the modal lines, as we find
in Fig, 5.

Besides their inherent simplicity, one more feature com-
mon to all of the network descriptions developed here
deserves further comment, namely, that the networks are
rapidly convergent with respect to the addition of trans-
mission lines corresponding to further modes. Taking as an
example the network shown in Fig. 4, we notice that the
two shunt admittances — Y%} | and — Y | are in parallel
with each other and with the transmission lines corre-
sponding to the n = —1 modes, and that this combination
is in parallel with the coupling element Z,. When |n]
becomes large, and when the mode in question is below
cutoff, the transmission lines are terminated by their reac-
tive dynamic characteristic admittances ¥ and Y,®,
which in turn are almost equal to the static characteristic
admittances ¥,) and Y, since, for TE modes,

. 2 2 172
- N
Y = — 2 k| = k2t
T o™ ( p )
and
m 27|n| -
Yvn,s =—7 () *
PO,
The four admittances Y,", ¥,?, —Y,%), and - Y2 thus

sum to almost zero, so that their shunt effect on Zy 18
essentially negligible. The contributions from the higher
modes thus become vanishingly small as |n| becomes large,
permitting us to employ an equivalent network of finite
size to represent the discontinuity with sufficient accuracy.

One more issue still needs to be addressed, namely, the
range of applicability of the results obtained. In order to
obtain an estimate of the range of applicability of the new
networks, let us recall that there is a key step common to
the approximate solutions of both the F1 and the F2
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integral equations, as well as to the derivation of the
closed-form analytical expressions for the matrix elements
A, .- This key step is the series expansion of the exponen-
tial function exp[+ j(2nwz)/p] on the left-hand side of (1)
and (2) and on the right-hand side of (3).

With respect to the solution of the integral equation F2,
let us recall the expression for g,(£) in (27) but add one
more term in the expansion; we then obtain

b

b 1 g
NETRRpALI

3

1
+j=— 4 ..

3!

7—né
b

(59)

In order to neglect all of the terms above the second order,
we must satisfy the following condition:
b 13

< (60)

This condition imposes a restriction on the relative geo-
metrical size of the discontinuity in relation to the maxi-
mum order of the mode that can be explicitly considered.
In fact, (60) shows that if we need to include explicitly a
mode of larger order, the admissible relative obstacle or
aperture size decreases linearly with increasing order. A
similar constraint can be derived from the solution proce-
dure of the F1 integral equation, namely
a b 6n

sin — — K ———,
2 S a1

(61)

V. ACCURACY OF THE NEW SIMPLE NETWORKS

In the previous sections we derived two different analyt-
ical solutions, which in turn led to new simple equivalent
networks, for the scattering problem under investigation.
What we need now is a reference solution of proven
validity to verify the accuracy of the numerical results
obtainable from the simple new networks. Such a reference
solution can be obtained by recasting the original bound-
ary-value problem into a Riemann-Hilbert form of known
solution [6], which will be referred to from now on as the
RH solution. This sophisticated theoretical approach to
obtaining accurate numerical solutions to the scattering
problem investigated here has already been proposed by
other authors (for instance, [7] and [8]), and the accuracy
of the numerical results has already been demonstrated.

Using the RH solution given in [7] and the networks
developed here, we have performed calculations for several
cases and have compared the results obtained. The struc-
ture chosen to effect the comparisons is the one shown in
Fig. 1, where the angle of incidence 8 is 15° and the ratio
a /p is varied in the range of small apettures (a < p) and
large apertures, or small obstacles (a = p). The quantity
compared is the relative transmitted power in the lowest
mode (n=0 spectral order) versus the relative period
p/ A, For most of the computations p/A,=1.70 is the
upper limit of the range evaluated since that range corre-
sponds to the region of interest for the grating application
that we originally had in mind (see Fig. 2 of Part I).
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Fig. 6. Comparisons between our F1 solution and the reference (RH)
solution for the large-aperture (small-obstacle) range with TE mode
incidence (“electrically large” case), for the relative transmitted power
in the lowest mode (1 = 0 spectral order) as a function of the relative
period p/A,. The angle of incidence (9 in Fig. 1) is 15° and awr is
present on both sides of the grating. The relative aperture size (a/p in
Fig. 1) is equal to 0.9, 0.8, or 0.75 in (a), (b), or (c), respectively. Very
good agreement is observed over the range of interest except for case
(c), which is at the end of the large-aperture range.

(PERIOD/WRVELENGTH)

Comparisons are presented below for the case in which
there is a dielectric medium (¢ == 2.0) on one side of the
grating and air on the other side, as well as for the special
case where air is present on both sides.

For the numerical comparisons, we have arbitrarily se-
lected TE excitation; for this excitation, the grating discon-
tinuity will be “electrically small” for small apertures and
“electrically large” for small obstacles (or large apertures).
For TM excitation, the cases would be reversed but noth-
ing essentially different would arise. Hence the compar-
isons presented here cover both types of solution and are
effectively complete.

Before presenting the numerical results, we should dis-
cuss the number of modes that can be included in any
specific network representation. We recall first of all that
the maximum order » of the modes that can be included is
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Fig. 7. Comparisons between our F2 solution, employing the simple
network in Fig. 4, and the reference (RH) solution for the small-aper-
ture range with TE mode incidence (“electrically small” case), for the
relative transmitted power in the lowest mode (» = 0 spectral order) as
a function of the relative period p/A,. All of the structural parameters
are the same as those in Fig. 6, except for the relative aperture size
a/p, which is equal to 0.1, 0.2, or 0.25 for the cases in (a), (b), or (¢),
respectively. Very good agreement is observed over the range of interest
except for case (c), where we are at the limit of the small-aperture
range.

related to the geometry of the grating by condition (60) for
electrically small gratings or condition (61) for electrically
large ones. For TE excitation and gratings for which a /p
is small, condition (60) yields n <« 9.5, 4.8, or 3.8 when
a/p=01, 0.2, or 0.25, respectively. To loosely satisfy
condition (60), the largest value of » that we could select
in these three cases would be n=+4, +2, or +2. For the
range of large apertures, condition (61) is not as direct, but
similar considerations would permit us to choose n up to
+4, £2, or £2 for a/p=0.9, 0.8, or 0.75, respectively.
These are the values we have chosen for our numerical
comparisons.

A limitation in the mode number » also limits the range
of p/A, over which the network representation is valid. As
p/ A, is increased, a larger number of modes go above
cutoff, and they must be included explicitly in the network
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Same as 1 Fig. 6 but with a different dielectric medium (¢ =
2.0) on one side of the grating, and air on the other side.

Fig. 8.

representation. When this requirement conflicts with con-
ditions (60) or (61), we have reached the limit in the range
of p/A, for which the network representation can yield
accurate numerical results. Since n can be chosen up to
+4 for a /p = 0.9 as compared with +2 for a /p = 0.8, for
example, we should expect that the results for a /p =0.9
would be accurate over a much larger range of p/A,.
Furthermore, since higher modes begin to radiate at lower
frequencies in a dielectric medium than in air, if a dielec-
tric medium is present on one side of the grating the same
maximum mode order would result in a somewhat smaller
range of p/A,. We shall see below that such behavior is
borne out by our numerical results.

With this introduction we are now ready to present the
numerical comparisons. Fig. 6 shows the results obtained
for a symmetric case (¢ = ¢? =1.0) in the large relative
aperture (or small-obstacle) range, namely a/p = 0.9, 0.8,
and 0.75 for the cases in (a), (b), and (c), respectively. In
accordance with condition (61), the numbers of modes we
have included in the networks are n=+4, +2, and +2,
respectively. As we can see, the agreement with the RH
solution is excellent over the range of interest except for
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Fig. 9. Same as in Fig. 7 but with a different dielectric medium (¢{? =
2.0) on one side of the grating, and air on the other side.

the case in (c), where we are at the limit of validity for the
large-aperture condition. (The curves are direct computer
plots, and in Fig. 6(a) the two different solutions are
coincident.) Fig. 7 presents the comparisons obtained for
the same parameters as for Fig. 6, but in the small-aper-
ture range, namely a /p = 0.1, 0.2, and 0.25 for the cases in
(a), (b), and (c), respectively. (Note that the ordinate scales
are different for cases (a), (b), and (c) in Fig. 7.) As
mentioned above, the numbers of modes included in the
networks for these computations are n = +4, +2, and +2,
in accordance with (60). Again, we observe very good
agreement over most of the range of interest, but the
results obtained from the network for case (c) are seen to
deteriorate since we are at the end of the small-aperture
range.

In both sets of figures we observe the presence of sharp
peaks at specific values of p/\,. These peaks occur when
a higher mode just reaches cutoff in the x direction,
corresponding to a diffracted beam which is just at the
grazing angle in the z direction. The peaks are also the
same as the pure Rayleigh form of Wood’s anomalies.
Going in the direction of increasing p/A, values in Fig.
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Fig. 10. For this set of comparisons we have explicitly included in the
networks higher order modes up to n = -5, and we have extended the
relative period range up to p/A, = 4.0. The case in (a) corresponds to
a/p=0.9 with air on both sides of the grating, while case (b) corre-
sponds to a/p =01 with € =1.0 and € =2.0. When these new
networks are used well within their respective ranges of validity, they
are very accurate and, at the same time, can accommodate a substantial
number of propagating higher modes (or spectral orders).

6(a), the first, second, and third peaks occur when the
n=—1, +1, and —2 modes, respectively, are exactly at
cutoff. The peaks in Fig. 6 are much more pronounced
than those in Fig. 7 because the grating for the calculations
in Fig. 6 represents an electrically large discontinuity.

Figs. 8 and 9 exhibit the results found for the same set
of parameters as those used for Figs. 6 and 7, respectively,
but with a different dielectric medium (with €/ =2) on
one side of the grating. As we can see, the same general
pattern of agreement with the RH solution is obtained. We
also recognize that the presence of the dielectric medium
reduces the range of p/A, over which good agreement is
expected, in accordance with the discussion above. Note
again the presence of peaks in both Figs. 8 and 9, corre-
sponding to values of p/A, at which progressively higher
order modes are at cutoff in the air or in the dielectric
region.

Finally, in accordance with the discussion above, we
demonstrate in Fig. 10(a) and (b) that when a higher
number of modes can be included in the appropriate
network, according to conditions (60) or (61), accurate
results can be expected over a larger range of p/\,. We
included modes up to +5 in the networks corresponding
to a/p=0.1 and 0.9. We observe from Fig. 10(a), for
a/p=0.9, that the agreement with the RH solution is
excellent up to p/A,=4.0. At the top of the figure we
indicate the correlation betweerl the cusp peak and the
order n of the higher mode that just begins to propagate,
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and we note that the n = —5 mode begins to propagate at
p/ A, almost equal to 4.0. Since the n = —6 mode is not

included in the network, we would not expect the excellent
agreement to continue much above p/A,=4.0. For Fig.
10(b), which corresponds to a/p=0.1 and different di-
electrics on each side of the grating, the discrepancy be-
tween the two curves occurs earlier, i.e., for lower values of
P/ Ay, mainly because the higher modes begin to propa-
gate on the dielectric side at lower values of p/A,. Al-
though the RH reference solution is accurate over a larger
range of p/A, values than is our network solution, we
should add that the computation time required for the RH
solution is far greater, particularly as more modes are
added, since a matrix inversion is required. A prime virtue
of our small-argument solutions is their relative simplicity.

VL

Many valuable papers have been published that are
concerned with the scattering of a plane wave by a peri-
odic metal-strip grating. Some papers provide accurate
numerical results even in the general case of arbitrary
angle of incidence, TE or TM field polarization, arbitrary
strip-to-period ratios, and, more important, a different
medium on each side of the grating and period-to-wave-
length ratios that permit diffracted higher order beams to
be present (multimode situation). Although procedures
that provide purely numerical results are available, compa-
rable useful equivalent network representations do not
exist.

In Part 1 of this pair of papers we present two new
rigorous multimode equivalent network representations
that are valid for the general situation indicated above.
These two new network representations, based on aperture
and obstacle formulations, respectively, follow from a
rephrasing of the relevant integral equations in which
“static” kernels are employed. The resulting integral equa-
tions remain rigorous, and so do the new network repre-
sentations that follow from them, despite the simplified
nature of the kernels, which in fact make it easier for us to
derive analytical solutions. Application to either TE or TM
excitation follows directly upon the insertion of the appro-
priate expressions for the modal characteristic impedance.
1t is then shown that of the four cases (aperture or obstacle
formulation with TE or TM excitation), only two basically
different types of integral equation result; they are both
Fredholm integral equations of the first kind with singular
“static” kernels, but the kernels in each are different. The
two different integral equations are then identified as
corresponding to “electrically large” (F1) and “electrically
small” (F2) formulations of the grating discontinuity.

In Part I1, these two integral equations are solved in the
small-argument limit, yielding very simple analytical ex-
pressions for the elements of the equivalent networks,
which are then valid for the small-aperture and the small-
obstacle dimensional ranges. The equivalent networks
themselves simplify greatly, and those for the “electrically
small” case become strikingly simple.

CONCLUSIONS
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For the wonderful advantage of having such very simple
network forms with analytically very simple expressions
for the network elements, we pay a price. The price is that
only a limited number of modes can be included in the
networks, in accordance with conditions (60) or (61). If
that limit is exceeded, the networks become less valid (in
addition to becoming slightly more complicated). In prac-
tice, this means that the range of aperture-to-period (a /p)
is limited to values below 0.25 or above 0.75, and that the
p/ A, values are also correspondingly limited (depending
on the number of modes permitted in the networks).
Within this limited, but not so small, range of grating strip
dimensions and wavelengths, we now have available an
ultrasimple group of equivalent networks which provide
very good accuracy. Five sets of curves are presented
which illustrate the accuracy obtained.

The importance of these equivalent networks resides in
their inherent simplicity and flexibility, which makes them
powerful tools for the analysis of more complex structures
containing these gratings as constituents.

APPENDIX
EVALUATION OF INTEGRALS OCCURRING IN THE
SINGULAR INTEGRAL EQUATION SOLUTION

Before describing the analytical evaluation of the inte-
grals in question, it is appropriate to introduce some
results that will be useful later, namely,

N §N+1_$N+1

neN—mn_ -~ Al
1 1-¢2
ﬂfl de=_g for |£§|<1.  (A2)
TV 1 f"'%

Equation (Al) can be simply derived from the partial
power series of (§/¢), and the derivation of (A2) can be
found in [5]. We can now proceed with the evaluation of
the integrals, starting with G,(£), which we will rewrite
explicitly, using (34) and (27):
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The first integral in (A3) is the same as (A2); using (Al),
the second and third integrals can be reduced to a combi-
nation of integrals similar to the one in (A2) and other
known integrals. We finally obtain
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The evaluation of Dn(s ) is now straightforward, yielding

6.5)

D"(g)zf_gl\/l—__gf ¢

bt 1 b\*
=1- 2 S22
£ ]n'rrp‘2 4n7r(p)

i %nw(%)z@—gz). (9)

Note also that from (AS) we have
D,(1)=D,=0 (A6)

and, therefore, to evaluate 4,, , we only need ﬁm,n. To
evaluate this quantity we now need to integrate the follow-
ing expression: g

A 1
b, = [ D(&)g:(¢)d (A7)
which, after a few simple steps, becomes
n T
D, ,= 3 (A8)
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